Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.382
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2314772121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621122

RESUMO

Dynamic networks composed of constituents that break and reform bonds reversibly are ubiquitous in nature owing to their modular architectures that enable functions like energy dissipation, self-healing, and even activity. While bond breaking depends only on the current configuration of attachment in these networks, reattachment depends also on the proximity of constituents. Therefore, dynamic networks composed of macroscale constituents (not benefited by the secondary interactions cohering analogous networks composed of molecular-scale constituents) must rely on primary bonds for cohesion and self-repair. Toward understanding how such macroscale networks might adaptively achieve this, we explore the uniaxial tensile response of 2D rafts composed of interlinked fire ants (S. invicta). Through experiments and discrete numerical modeling, we find that ant rafts adaptively stabilize their bonded ant-to-ant interactions in response to tensile strains, indicating catch bond dynamics. Consequently, low-strain rates that should theoretically induce creep mechanics of these rafts instead induce elastic-like response. Our results suggest that this force-stabilization delays dissolution of the rafts and improves toughness. Nevertheless, above 35[Formula: see text] strain low cohesion and stress localization cause nucleation and growth of voids whose coalescence patterns result from force-stabilization. These voids mitigate structural repair until initial raft densities are restored and ants can reconnect across defects. However mechanical recovery of ant rafts during cyclic loading suggests that-even upon reinstatement of initial densities-ants exhibit slower repair kinetics if they were recently loaded at faster strain rates. These results exemplify fire ants' status as active agents capable of memory-driven, stimuli-response for potential inspiration of adaptive structural materials.


Assuntos
Formigas , 60601 , Animais , Formigas/fisiologia , Física , Microdomínios da Membrana
2.
J Phys Chem B ; 128(15): 3652-3661, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38576273

RESUMO

Many pharmaceutical drugs are known to interact with lipid membranes through nonspecific molecular interactions, which affect their therapeutic effect. Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) and one of the most commonly prescribed. In the presence of cholesterol, lipid bilayers can separate into nanoscale liquid-disordered and liquid-ordered structures, the latter known as lipid rafts. Here, we study spin-labeled ibuprofen (ibuprofen-SL) in the model membrane consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol in the molar ratio of (0.5-0.5xchol)/(0.5-0.5xchol)/xchol. Electron paramagnetic resonance (EPR) spectroscopy is employed, along with its pulsed version of double electron-electron resonance (DEER, also known as PELDOR). The data obtained indicate lateral lipid-mediated clustering of ibuprofen-SL molecules with a local surface density noticeably larger than that expected for random lateral distribution. In the absence of cholesterol, the data can be interpreted as indicating alternating clustering in two opposing leaflets of the bilayer. In the presence of cholesterol, for xchol ≥ 20 mol %, the results show that ibuprofen-SL molecules have a quasi-regular lateral distribution, with a "superlattice" parameter of ∼3.0 nm. This regularity can be explained by the entrapment of ibuprofen-SL molecules by lipid rafts known to exist in this system with the additional assumption that lipid rafts have a nanoscale substructure.


Assuntos
Ibuprofeno , Bicamadas Lipídicas , Espectroscopia de Ressonância de Spin Eletrônica , Bicamadas Lipídicas/química , Colesterol/química , Microdomínios da Membrana , Fosfatidilcolinas/química
3.
Lipids Health Dis ; 23(1): 114, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643132

RESUMO

Disturbances in cholesterol homeostasis have been associated with ASD. Lipid rafts are central in many transmembrane signaling pathways (including mTOR) and changes in raft cholesterol content affect their order function. Cholesterol levels are controlled by several mechanisms, including endoplasmic reticulum associated degradation (ERAD) of the rate limiting HMGCoA reductase. A new approach to increase cholesterol via temporary ERAD blockade using a benign bacterial toxin-derived competitor for the ERAD translocon is suggested.A new lock and key model for cholesterol/lipid raft dependent signaling is proposed in which the rafts provide both the afferent and efferent 'tumblers' across the membrane to allow 'lock and key' receptor transmembrane signals.


Assuntos
Transtorno do Espectro Autista , Humanos , Colesterol/metabolismo , Degradação Associada com o Retículo Endoplasmático , Microdomínios da Membrana/metabolismo
4.
J Phys Chem Lett ; 15(16): 4515-4522, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38634827

RESUMO

Cholesterol-rich lipid rafts are found to facilitate membrane fusion, central to processes like viral entry, fertilization, and neurotransmitter release. While the fusion process involves local, transient membrane dehydration, the impact of reduced hydration on cholesterol's structural organization in biological membranes remains unclear. Here, we employ confocal fluorescence microscopy and atomistic molecular dynamics simulations to investigate cholesterol behavior in phase-separated lipid bilayers under controlled hydration. We unveiled that dehydration prompts cholesterol release from raft-like domains into the surrounding fluid phase. Unsaturated phospholipids undergo more significant dehydration-induced structural changes and lose more hydrogen bonds with water than sphingomyelin. The results suggest that cholesterol redistribution is driven by the equalization of biophysical properties between phases and the need to satisfy lipid hydrogen bonds. This underscores the role of cholesterol-phospholipid-water interplay in governing cholesterol affinity for a specific lipid type, providing a new perspective on the regulatory role of cell membrane heterogeneity during membrane fusion.


Assuntos
Colesterol , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Água , Colesterol/química , Colesterol/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Água/química , Água/metabolismo , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Ligação de Hidrogênio , Esfingomielinas/química , Esfingomielinas/metabolismo , Fusão de Membrana , Fosfolipídeos/química , Fosfolipídeos/metabolismo
5.
Cells ; 13(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38534331

RESUMO

High blood levels of low-density lipoprotein (LDL)-cholesterol (LDL-C) are associated with atherosclerosis, mainly by promoting foam cell accumulation in vessels. As cholesterol is an essential component of cell plasma membranes and a regulator of several signaling pathways, LDL-C excess may have wider cardiovascular toxicity. We examined, in untreated hypercholesterolemia (HC) patients, selected regardless of the cause of LDL-C accumulation, and in healthy participants (HP), the expression of the adenosine A2A receptor (A2AR), an anti-inflammatory and vasodilatory protein with cholesterol-dependent modulation, and Flotillin-1, protein marker of cholesterol-enriched plasma membrane domains. Blood cardiovascular risk and inflammatory biomarkers were measured. A2AR and Flotillin-1 expression in peripheral blood mononuclear cells (PBMC) was lower in patients compared to HP and negatively correlated to LDL-C blood levels. No other differences were observed between the two groups apart from transferrin and ferritin concentrations. A2AR and Flotillin-1 proteins levels were positively correlated in the whole study population. Incubation of HP PBMCs with LDL-C caused a similar reduction in A2AR and Flotillin-1 expression. We suggest that LDL-C affects A2AR expression by impacting cholesterol-enriched membrane microdomains. Our results provide new insights into the molecular mechanisms underlying cholesterol toxicity, and may have important clinical implication for assessment and treatment of cardiovascular risk in HC.


Assuntos
Doenças Cardiovasculares , Hipercolesterolemia , Proteínas de Membrana , Humanos , LDL-Colesterol/metabolismo , Receptor A2A de Adenosina/metabolismo , Leucócitos Mononucleares/metabolismo , Adenosina , Fatores de Risco , Colesterol , Proteínas de Transporte , Fatores de Risco de Doenças Cardíacas , Microdomínios da Membrana/metabolismo
6.
Biomolecules ; 14(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38540780

RESUMO

Lipid rafts, specialised microdomains within cell membranes, play a central role in orchestrating various aspects of neurodevelopment, ranging from neural differentiation to the formation of functional neuronal networks. This review focuses on the multifaceted involvement of lipid rafts in key neurodevelopmental processes, including neural differentiation, synaptogenesis and myelination. Through the spatial organisation of signalling components, lipid rafts facilitate precise signalling events that determine neural fate during embryonic development and in adulthood. The evolutionary conservation of lipid rafts underscores their fundamental importance for the structural and functional complexity of the nervous system in all species. Furthermore, there is increasing evidence that environmental factors can modulate the composition and function of lipid rafts and influence neurodevelopmental processes. Understanding the intricate interplay between lipid rafts and neurodevelopment not only sheds light on the fundamental mechanisms governing brain development but also has implications for therapeutic strategies aimed at cultivating neuronal networks and addressing neurodevelopmental disorders.


Assuntos
Neurônios , Transdução de Sinais , Membrana Celular/metabolismo , Transdução de Sinais/fisiologia , Encéfalo , Microdomínios da Membrana/química
7.
Acta Physiol (Oxf) ; 240(4): e14125, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533975

RESUMO

AIM: Trafficking, membrane retention, and signal-specific regulation of the Na+/H+ exchanger 3 (NHE3) are modulated by the Na+/H+ Exchanger Regulatory Factor (NHERF) family of PDZ-adapter proteins. This study explored the assembly of NHE3 and NHERF2 with the cGMP-dependent kinase II (cGKII) within detergent-resistant membrane microdomains (DRMs, "lipid rafts") during in vivo guanylate cycle C receptor (Gucy2c) activation in murine small intestine. METHODS: Small intestinal brush border membranes (siBBMs) were isolated from wild type, NHE3-deficient, cGMP-kinase II-deficient, and NHERF2-deficient mice, after oral application of the heat-stable Escherichia coli toxin (STa) analog linaclotide. Lipid raft and non-raft fractions were separated by Optiprep density gradient centrifugation of Triton X-solubilized siBBMs. Confocal microscopy was performed to study NHE3 redistribution after linaclotide application in vivo. RESULTS: In the WT siBBM, NHE3, NHERF2, and cGKII were strongly raft associated. The raft association of NHE3, but not of cGKII, was NHERF2 dependent. After linaclotide application to WT mice, lipid raft association of NHE3 decreased, that of cGKII increased, while that of NHERF2 did not change. NHE3 expression in the BBM shifted from a microvillar to a terminal web region. The linaclotide-induced decrease in NHE3 raft association and in microvillar abundance was abolished in cGKII-deficient mice, and strongly reduced in NHERF2-deficient mice. CONCLUSION: NHE3, cGKII, and NHERF2 form a lipid raft-associated signal complex in the siBBM, which mediates the inhibition of salt and water absorption by Gucy2c activation. NHERF2 enhances the raft association of NHE3, which is essential for its close interaction with the exclusively raft-associated activated cGKII.


Assuntos
Intestino Delgado , Trocadores de Sódio-Hidrogênio , Animais , Camundongos , Trocador 3 de Sódio-Hidrogênio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Microvilosidades/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Microdomínios da Membrana/metabolismo
8.
J Agric Food Chem ; 72(13): 7130-7139, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38516841

RESUMO

Macrophage inflammation and oxidative stress promote atherosclerosis progression. Naringenin is a naturally occurring flavonoid with antiatherosclerotic properties. Here, we elucidated the effects of naringenin on monocyte/macrophage endothelial infiltration and vascular inflammation. We found naringenin inhibited oxidized low-density lipoprotein (oxLDL)-induced pro-inflammatory cytokines such as IL-1ß, IL-6, and TNF-α toward an M2 macrophage phenotype and inhibited oxLDL-induced TLR4 (Toll-like receptor 4) membrane translocation and downstream NF-κB transcriptional activity. Results from flow cytometric analysis showed that naringenin reduced monocyte/macrophage infiltration in the aorta of high-fat-diet-treated ApoE-deficient mice. The aortic cytokine levels were also inhibited in naringenin-treated mice. Further, we found that naringenin reduced lipid raft clustering and acid sphingomyelinase (ASMase) membrane gathering and inhibited the TLR4 and NADPH oxidase subunit p47phox membrane recruitment, which reduced the inflammatory response. Recombinant ASMase treatment or overexpression of ASMase abolished the naringenin function and activated macrophage and vascular inflammation. We conclude that naringenin inhibits ASMase-mediated lipid raft redox signaling to attenuate macrophage activation and vascular inflammation.


Assuntos
Flavanonas , Esfingomielina Fosfodiesterase , Receptor 4 Toll-Like , Camundongos , Animais , Receptor 4 Toll-Like/genética , Esfingomielina Fosfodiesterase/genética , Inflamação/tratamento farmacológico , Inflamação/genética , NF-kappa B , Citocinas , NADPH Oxidases/genética , Microdomínios da Membrana
9.
J Am Chem Soc ; 146(11): 7640-7648, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38466380

RESUMO

The cell membrane exhibits a remarkable complexity of lipids and proteins that dynamically segregate into distinct domains to coordinate various cellular functions. The ability to manipulate the partitioning of specific membrane proteins without involving genetic modification is essential for decoding various cellular processes but highly challenging. In this work, by conjugating cholesterols or tocopherols at the three bottom vertices of the DNA tetrahedron, we develop two sets of nanodevices for the selective targeting of lipid-order (Lo) and lipid-disorder (Ld) domains on the live cell membrane. By incorporation of protein-recognition ligands, such as aptamers or antibodies, through toehold-mediated strand displacement, these DNA nanodevices enable dynamic translocation of target proteins between these two domains. We first used PTK7 as a protein model and demonstrated, for the first time, that the accumulation of PTK7 to the Lo domains could promote tumor cell migration, while sequestering it in the Ld domains would inhibit the movement of the cells. Next, based on their modular nature, these DNA nanodevices were extended to regulate the process of T cell activation through manipulating the translocation of CD45 between the Lo and the Ld domains. Thus, our work is expected to provide deep insight into the study of membrane structure and molecular interactions within diverse cell signaling processes.


Assuntos
DNA , Proteínas de Membrana , Membrana Celular/química , DNA/química , Proteínas de Membrana/análise , Lipídeos/química , Bicamadas Lipídicas/química , Microdomínios da Membrana/química
10.
Biomolecules ; 14(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38397393

RESUMO

The purpose of this review is to succinctly examine the methodologies used in lipid raft research in the brain and to highlight the drawbacks of some investigative approaches. Lipid rafts are biochemically and biophysically different from the bulk membrane. A specific lipid environment within membrane domains provides a harbor for distinct raftophilic proteins, all of which in concert create a specialized platform orchestrating various cellular processes. Studying lipid rafts has proved to be arduous due to their elusive nature, mobility, and constant dynamic reorganization to meet the cellular needs. Studying neuronal lipid rafts is particularly cumbersome due to the immensely complex regional molecular architecture of the central nervous system. Biochemical fractionation, performed with or without detergents, is still the most widely used method to isolate lipid rafts. However, the differences in solubilization when various detergents are used has exposed a dire need to find more reliable methods to study particular rafts. Biochemical methods need to be complemented with other approaches such as live-cell microscopy, imaging mass spectrometry, and the development of specific non-invasive fluorescent probes to obtain a more complete image of raft dynamics and to study the spatio-temporal expression of rafts in live cells.


Assuntos
Detergentes , Microdomínios da Membrana , Microdomínios da Membrana/química , Encéfalo
11.
J Cell Biol ; 223(5)2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38358349

RESUMO

Different membrane microdomain compositions provide unique environments that can regulate signaling receptor function. We identify microdomains on the endosome membrane of Drosophila endosomes, enriched in lipid-raft or clathrin/ESCRT-0, which are associated with Notch activation by distinct, ligand-independent mechanisms. Transfer of Notch between microdomains is regulated by Deltex and Suppressor of deltex ubiquitin ligases and is limited by a gate-keeper role for ESCRT complexes. Ubiquitination of Notch by Deltex recruits it to the clathrin/ESCRT-0 microdomain and enhances Notch activation by an ADAM10-independent/TRPML-dependent mechanism. This requirement for Deltex is bypassed by the downregulation of ESCRT-III. In contrast, while ESCRT-I depletion also activates Notch, it does so by an ADAM10-dependent/TRPML-independent mechanism and Notch is retained in the lipid raft-like microdomain. In the absence of such endosomal perturbation, different activating Notch mutations also localize to different microdomains and are activated by different mechanisms. Our findings demonstrate the interplay between Notch regulators, endosomal trafficking components, and Notch genetics, which defines membrane locations and activation mechanisms.


Assuntos
Proteínas de Drosophila , Drosophila , Proteínas de Membrana , Receptores Notch , Canais de Potencial de Receptor Transitório , Animais , Proteína ADAM10/metabolismo , Clatrina/metabolismo , Regulação para Baixo , Proteínas de Drosophila/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Receptores Notch/metabolismo , Ubiquitinação , Proteínas de Membrana/metabolismo , Microdomínios da Membrana/metabolismo
12.
Biochim Biophys Acta Biomembr ; 1866(3): 184294, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316379

RESUMO

This study presents a new approach to designing a lithocholic acid functionalized oligomer (OLithocholicAA-X) that can be used as a drug carrier with additional, beneficial activity. Namely, this novel oligomer can incorporate an anti-cancer drug due to the application of an effective backbone as its component (lithocholic acid) alone is known to have anticancer activity. The oligomer was synthesized and characterized in detail by nuclear magnetic resonance, attenuated total reflectance Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, thermal analysis, and mass spectrometry analysis. We selected lipid rafts as potential drug carrier-membrane binding sites. In this respect, we investigated the effects of OLithocholicAA-X on model lipid raft of normal and altered composition, containing an increased amount of cholesterol (Chol) or sphingomyelin (SM), using Langmuir monolayers and liposomes. The surface topography of the studied monolayers was additionally investigated by atomic force microscopy (AFM). The obtained results showed that the investigated oligomer has affinity for a system that mimics a normal lipid raft (SM:Chol 2:1). On the other hand, for systems with an excess of SM or Chol, thermodynamically unfavorable fluidization of the films occurs. Moreover, AFM topographies showed that the amount of SM determines the bioavailability of the oligomer, causing fragmentation of its lattice.


Assuntos
Lipossomos , Ácido Litocólico , Ácido Litocólico/análise , Ácido Litocólico/metabolismo , Lipossomos/química , Sistemas de Liberação de Medicamentos , Espectroscopia de Ressonância Magnética , Microdomínios da Membrana/química , Esfingomielinas/química , Colesterol/química
13.
J Mater Chem B ; 12(10): 2547-2558, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38358131

RESUMO

Monitoring active membrane cholesterol and lipid raft cholesterol in the inner leaflet of the plasma membrane is significant for understanding the membrane function and cellular physiopathological processes. Limited by existing methods, it is difficult to differentiate active membrane cholesterol and lipid raft cholesterol. A novel dual-monomer solvatochromic probe system (DSPS) that targets two types of cholesterol was developed. Acrylodan-BG/SNAP-D4 composed of SNAP-D4 cholesterol-recognizing monomers and solvatochromic acrylodan-BG-sensing monomers exhibits excellent cholesterol detecting properties in terms of selectivity, accuracy, convenience and economic benefits. Cell imaging revealed that lipid raft cholesterol emitted blue fluorescence, whereas active membrane cholesterol (which partially bobbed in aqueous cytosol) displayed green fluorescence; both the fluorescence emissions increased or decreased in a cholesterol-dependent manner. This system provides a new technology for the determination of two types of cholesterol, which is beneficial for the further study of membrane function, intracellular cholesterol trafficking, and cell signaling.


Assuntos
2-Naftilamina/análogos & derivados , Colesterol , Microdomínios da Membrana , Membrana Celular/metabolismo , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo
14.
Biomacromolecules ; 25(2): 778-791, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38190609

RESUMO

Considerable attention has been dedicated to lipid rafts due to their importance in numerous cell functions such as membrane trafficking, polarization, and signaling. Next to studies in living cells, artificial micrometer-sized vesicles with a minimal set of components are established as a major tool to understand the phase separation dynamics and their intimate interplay with membrane proteins. In parallel, mixtures of phospholipids and certain amphiphilic polymers simultaneously offer an interface for proteins and mimic this segregation behavior, presenting a tangible synthetic alternative for fundamental studies and bottom-up design of cellular mimics. However, the simultaneous insertion of complex and sensitive membrane proteins is experimentally challenging and thus far has been largely limited to natural lipids. Here, we present the co-reconstitution of the proton pump bo3 oxidase and the proton consumer ATP synthase in hybrid polymer/lipid giant unilamellar vesicles (GUVs) via fusion/electroformation. Variations of the current method allow for tailored reconstitution protocols and control of the vesicle size. In particular, mixing of protein-free and protein-functionalized nanosized vesicles in the electroformation film results in larger GUVs, while separate reconstitution of the respiratory enzymes enables higher ATP synthesis rates. Furthermore, protein labeling provides a synthetic mechanism for phase separation and protein sequestration, mimicking lipid- and protein-mediated domain formation in nature. The latter means opens further possibilities for re-enacting phenomena like supercomplex assembly or symmetry breaking and enriches the toolbox of bottom-up synthetic biology.


Assuntos
Polímeros , Lipossomas Unilamelares , Fosfolipídeos , Proteínas de Membrana , Microdomínios da Membrana/metabolismo , Trifosfato de Adenosina
15.
Biomed Pharmacother ; 171: 116149, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38266621

RESUMO

Metastasis is the leading cause of cancer mortality. Metastatic cancer is notoriously difficult to treat, and it accounts for the majority of cancer-related deaths. The ether lipid edelfosine is the prototype of a family of synthetic antitumor compounds collectively known as alkylphospholipid analogs, and its antitumor activity involves lipid raft reorganization. In this study, we examined the effect of edelfosine on metastatic colonization and angiogenesis. Using non-invasive bioluminescence imaging and histological examination, we found that oral administration of edelfosine in nude mice significantly inhibited the lung and brain colonization of luciferase-expressing 435-Lung-eGFP-CMV/Luc metastatic cells, resulting in prolonged survival. In metastatic 435-Lung and MDA-MB-231 breast cancer cells, we found that edelfosine also inhibited cell adhesion to collagen-I and laminin-I substrates, cell migration in chemotaxis and wound-healing assays, as well as cancer cell invasion. In 435-Lung and other MDA-MB-435-derived sublines with different organotropism, edelfosine induced G2/M cell cycle accumulation and apoptosis in a concentration- and time-dependent manner. Edelfosine also inhibited in vitro angiogenesis in human and mouse endothelial cell tube formation assays. The antimetastatic properties were specific to cancer cells, as edelfosine had no effects on viability in non-cancerous cells. Edelfosine accumulated in membrane rafts and endoplasmic reticulum of cancer cells, and membrane raft-located CD44 was downregulated upon drug treatment. Taken together, this study highlights the potential of edelfosine as an attractive drug to prevent metastatic growth and organ colonization in cancer therapy. The raft-targeted drug edelfosine displays a potent activity against metastatic organ colonization and angiogenesis, two major hallmarks of tumor malignancy.


Assuntos
Antineoplásicos , Neoplasias , Animais , Camundongos , Humanos , Camundongos Nus , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Éteres Fosfolipídicos/metabolismo , Éteres Fosfolipídicos/farmacologia , Éteres Fosfolipídicos/uso terapêutico , Apoptose , Microdomínios da Membrana/metabolismo
16.
J Am Chem Soc ; 146(2): 1374-1387, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38171000

RESUMO

The peroxidation of membrane lipids by free radicals contributes to aging, numerous diseases, and ferroptosis, an iron-dependent form of cell death. Peroxidation changes the structure and physicochemical properties of lipids, leading to bilayer thinning, altered fluidity, and increased permeability of membranes in model systems. Whether and how lipid peroxidation impacts the lateral organization of proteins and lipids in biological membranes, however, remains poorly understood. Here, we employ cell-derived giant plasma membrane vesicles (GPMVs) as a model to investigate the impact of lipid peroxidation on ordered membrane domains, often termed membrane rafts. We show that lipid peroxidation induced by the Fenton reaction dramatically enhances the phase separation propensity of GPMVs into coexisting liquid-ordered (Lo) and liquid-disordered (Ld) domains and increases the relative abundance of the disordered phase. Peroxidation also leads to preferential accumulation of peroxidized lipids and 4-hydroxynonenal (4-HNE) adducts in the disordered phase, decreased lipid packing in both Lo and Ld domains, and translocation of multiple classes of raft proteins out of ordered domains. These findings indicate that the peroxidation of plasma membrane lipids disturbs many aspects of membrane rafts, including their stability, abundance, packing, and protein and lipid composition. We propose that these disruptions contribute to the pathological consequences of lipid peroxidation during aging and disease and thus serve as potential targets for therapeutic intervention.


Assuntos
Lipídeos de Membrana , 60422 , Peroxidação de Lipídeos , Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas/metabolismo , Microdomínios da Membrana/química , Bicamadas Lipídicas/química
17.
Cell Mol Life Sci ; 81(1): 39, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214751

RESUMO

Colorectal cancer (CRC) is characterized by a complex tumor inflammatory microenvironment, while angiogenesis and immunosuppression frequently occur concomitantly. However, the exact mechanism that controls angiogenesis and immunosuppression in CRC microenvironment remains unclear. Herein, we found that expression levels of lipid raft protein STOML2 were increased in CRC and were associated with advanced disease stage and poor survival outcomes. Intriguingly, we revealed that STOML2 is essential for CRC tumor inflammatory microenvironment, which induces angiogenesis and facilitates tumor immune escape simultaneously both in vitro and in vivo. Moreover, tumors with STOML2 overexpression showed effective response to anti-angiogenesis treatment and immunotherapy in vivo. Mechanistically, STOML2 regulates CRC proliferation, angiogenesis, and immune escape through activated NF-κB signaling pathway via binding to TRADD protein, resulting in upregulation of CCND1, VEGF, and PD-L1. Furthermore, treatment with NF-κB inhibitor dramatically reversed the ability of proliferation and angiogenesis. Clinically, we also observed a strong positive correlation between STOML2 expression and Ki67, CD31, VEGFC and PD-1 of CD8+T cell expression. Taken together, our results provided novel insights into the role of STOML2 in CRC inflammatory microenvironment, which may present a therapeutic opportunity for CRC.


Assuntos
Neoplasias Colorretais , Proteínas de Membrana , NF-kappa B , Microambiente Tumoral , Humanos , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Regulação para Cima , Microdomínios da Membrana , Proteínas de Membrana/genética
18.
Curr Opin Cell Biol ; 86: 102308, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38168583

RESUMO

The plasma membrane serves as the primary barrier between the cell's interior and its external surroundings, which places it at the forefront of intercellular communication, receptor signal transduction and the integration of mechanical forces from outside. Most of these signals are largely dependent on the plasma membrane heterogeneity which relies on lipid-lipid and lipid-protein interactions and the lateral nano-distribution of lipids organized by the dynamic network of cortical actin. In this review, we undertake an in-depth exploration of recent discoveries, which contribute significantly to the evolution from raft model to lipid nanodomains. Specifically, we will focus on their role in membrane receptor-mediated signaling in the context of cell membrane mechanics.


Assuntos
Actinas , Comunicação Celular , Actinas/metabolismo , Membrana Celular/metabolismo , Transdução de Sinais , Lipídeos , Microdomínios da Membrana/metabolismo
19.
J Mol Med (Berl) ; 102(3): 391-402, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38285093

RESUMO

Amyotrophic lateral sclerosis (ALS) is an age-dependent neurodegenerative disease affecting motor neurons in the spinal cord and brainstem whose etiopathogenesis remains unclear. Recent studies have linked major neurodegenerative diseases with altered function of multimolecular lipid-protein complexes named lipid rafts. In the present study, we have isolated lipid rafts from the anterior horn of the spinal cords of controls and ALS individuals and analysed their lipid composition. We found that ALS affects levels of different fatty acids, lipid classes and related ratios and indexes. The most significant changes affected the contents of n-9/n-7 monounsaturated fatty acids and arachidonic acid, the main n-6 long-chain polyunsaturated fatty acid (LCPUFA), which were higher in ALS lipid rafts. Paralleling these findings, ALS lipid rafts lower saturates-to-unsaturates ratio compared to controls. Further, levels of cholesteryl ester (SE) and anionic-to-zwitterionic phospholipids ratio were augmented in ALS lipid rafts, while sulfatide contents were reduced. Further, regression analyses revealed augmented SE esterification to (mono)unsaturated fatty acids in ALS, but to saturates in controls. Overall, these changes indicate that lipid rafts from ALS spinal cord undergo destabilization of the lipid structure, which might impact their biophysical properties, likely leading to more fluid membranes. Indeed, estimations of membrane microviscosity confirmed less viscous membranes in ALS, as well as more mobile yet smaller lipid rafts compared to surrounding membranes. Overall, these results demonstrate that the changes in ALS lipid rafts are unrelated to oxidative stress, but to anomalies in lipid metabolism and/or lipid raft membrane biogenesis in motor neurons. KEY MESSAGES: The lipid matrix of multimolecular membrane complexes named lipid rafts are altered in human spinal cord in sporadic amyotrophic lateral sclerosis (ALS). Lipid rafts from ALS spinal cord contain higher levels of n-6 LCPUFA (but not n-3 LCPUFA), n-7/n-9 monounsaturates and lower saturates-to-unsaturates ratio. ALS lipid rafts display increased contents of cholesteryl esters, anomalous anionic-to-zwitterionic phospholipids and phospholipid remodelling and reduced sulphated and total sphingolipid levels, compared to control lipid rafts. Destabilization of the lipid structure of lipid raft affects their biophysical properties and leads to more fluid, less viscous membrane microdomains. The changes in ALS lipid rafts are unlikely related to increased oxidative stress, but to anomalies in lipid metabolism and/or raft membrane biogenesis in motor neurons.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Neurodegenerativas , Humanos , Esclerose Amiotrófica Lateral/metabolismo , Esclerose Amiotrófica Lateral/patologia , Doenças Neurodegenerativas/metabolismo , Lipídeos , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/patologia
20.
J Environ Manage ; 352: 120077, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38242025

RESUMO

Tropical Atlantic blooms of pelagic Sargassum species are associated with severe inundation events along the coasts of Caribbean and West African nations that cause extensive ecological and socioeconomic harm. The use of in-water harvesting as a management strategy avoids the plethora of challenges associated with shoreline inundations. Moreover, with a growing interest in the valorisation of this raw material, in-water harvesting provides the best opportunity to collect substantial amounts of 'fresh' sargassum that can be used in a variety of applications. However, in-water harvesting of sargassum will remove organisms associated with the floating habitat, resulting in loss of biodiversity, thus creating a potential management dilemma. To address this management concern, we assessed the clinging fauna associated with sargassum rafts at various distances from shore. From a total of 119 dipnet samples of sargassum, we recorded 18 taxa, across 6 phyla (Arthropoda, Mollusca, Chordata, Platyhelminthes, Nemathelminthes, Annelida) with the phylum Arthropoda being the most speciose (n = 10). Our multivariate and model selection analyses support that distance from shore and season are the most important drivers of variability in community composition and that season is the most important driver of individual abundance and number of taxa across samples. Overall, rafts within 0-3000 m of the shoreline of Barbados harbored low biodiversity and were dominated by small invertebrates (mean size: 5.5 mm) of no commercial value. Results suggest that biodiversity trade-offs associated with in-water sargassum harvesting in coastal areas are likely to be negligible.


Assuntos
Artrópodes , Sargassum , Animais , Água , Região do Caribe , Ecossistema , Microdomínios da Membrana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...